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Novel -7 alternating copolymers, poly(disilanylene-2,2’-
bipyridine-5,5’-diyl) and poly(silylene-2,2’-bipyridine-5,5’-diyl)
and their ruthenium complexes, were synthesized.  The
ruthenium complexes showed photoconductivity caused by
metal-to-ligand charge-transfer excitation.

There has been considerable interest in the chemistry of
polymers having a regular alternating arrangement of a silicon 6
unit and a m-system in the backbone.l-5 2,2’-Bipyridyl may
serve as an interesting ® system in the o©-m alternating
copolymers because the electron affinity may be tunable by
regulating coordination to a Lewis acid or a transition metal. In
addition, tris(bipyridine)ruthenium complexes are known to
exhibit interesting electron-transfer pro gerties through metal-to-
ligand charge transfer (MLCT) process.® Although many soluble
polymers having 2,2’-bipyridine in the polymer side chain have
been known, very few polymers containing 2,2’-bipyridine
derivatives in the polymer backbone have been reported so far. 6-
1T Yamamoto et al. have investigated synthesis and properties of
a number of poly(2,2’-bipyridine-5,5’-diyl) derivatives. 78 yu
et al. have recently prepared new conjugated polymers with
tris(2,2’-bipyridyl) ruthenium complex in a polymer backbone.?
In this paper, we report synthesis and optoelectronic properties of
new polymers having a regular alternating arrangement of a
silicon G unit and a 2,2’-bipyridyl © system in the backbone and
their ruthenium complexes, in which the polymer backbone may
act as an electron channel after electron injection via the MLCT
excitation. Actually, we have found photoconductivity of the
polymer complexes.

Poly(tetrapropyldisilanylene-2,2’-bipyridine-5,5°-diyl) 112
and poly(dihexylsilylene-2,2’-bipyridine-5,5’~-diyl) 213 were
synthesized by dehalogenative coupling of 1,2-bis(2-bromo-5-
pyndyl)tetrapropyldlsllane (5)14 and bis(2-bromo-5-pyridyl)-
dihexylsilane (6) respectively, using nickel (0) catalyst
(Scheme 1).16,17 Compounds 5 and 6 were prepared by
reactions of the corresponding dichlorosilanes with 2-bromo-5-
lithiopyridine, which was prepared by the mono-lithiation of 2,5-
dibromopyridine with n-butyllithium. The molecular weights
(Mw) of 1 and 2 were determined by GPC to be 11000 and
9000, respectively, relative to polystyrene standard; 1 and 2 are
highly soluble in common organic solvents such as
dichloromethane, chloroform, benzene, and THF. Polymers 1
and 2 should hold regular repetition of disilanylene-bipyridyl and
silylene-bipyridyl units, respectively, as proved by NMR
spectroscopy.

The ruthenium complexes of 1 and 2, polymers 3 and 4,
were prepared as light orange solids by reactions of
bis(bipyridine)ruthenium ion Ru(bpy)22+ with 1 and 2,
respectively.18  The Ru contents in both 3 and 4 were
determined to be about 35 mol% per bipyridine in the polymer
backbone by 1H NMR spectroscopy. The absorption spectra of

polymers 1 and 3 in dichloromethane are shown in Figure 1.
Absorption maxima of bipyridine ©-n* transition of 1 and 3
appear at around 310 and 293 nm, respectively. In addition, 3
shows the MLCT band maximum at 459 nm, which is close to
the reported value for Ru(bpy)32+ (454 nm)6b. Similarly, the
MLCT band maximum of 4 was found at 462 nm.
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Scheme 1.

Irradiation of a thin film of 3 in air with a xenon lamp (500
W) led to facile degradation of the polymer as observed UV-vis
spectroscopically,19 while no serious degradation occurred when
the same sample was irradiated with visible light (A > 400 nm).

Photoconductivity of 3 and 4 was measured in a sandwich
type cell with aluminum and indium-tin-oxide (ITO) as top and
bottom electrodes, respectively. The monochromatic light from a
tungsten lamp was irradiated through the bottom electrode on a
quartz plate. Both 3 and 4 were photoconductive. Typically,
photocurrent spectrum of 3 measured in an argon atmosphere is
shown in Figure 2. A similar film of 4 showed photocurrent
with the maximum at ca. 470 nm. Because these spectra are well
in accord with the MLCT absorption bands, the electron carriers
are suggested to be produced through the MLCT excitation in a
tris(bipyridine)ruthenium moiety.
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Figure 1. UV-vis spectra of polymers 1 and 3 in
CH)Cl.
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Figure 2. Photocurrent spectrum of polymer 3 in
an ITO/3/Al sandwich type cell at 6 V.

Further work is in progress to determine the relative

efficiency of the photoconductivity between 3 and 4.
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